

Case 2

- 56 yr old presenting to ED in septic shock
 - Fever 103 $^{\circ}$ F
 - Markedly tachypneic
- History of present illness:
 - 2d of fevers/chills
 - 2d of shortness of breath
- Past medical history:
 - Kidney transplant 6 yrs ago, on renal dialysis
 - AV fistula placement 3 yrs ago

Case 2

- Microbiology Cultures
 - 2 sets of blood cx
 - \circ 2/2 S. aureus
 - MRSA Nasal Screen by PCR
 Positive

- Results Timeline
 - Day 1- Positive blood cx
 - » GPR on GS
 - » MRSA Detected by PCR
 - Day 2- Growth on culture plates

» S. aureus

- Day 3- MIC available for S. aureus
 - » Discordant molecular and MIC
- Day 4-5- Repeat testing/re-isolation

Case 2

Molecular AR

From Positive Blood Cx					
mecA	Detected				
SCCmec	Detected				

Clinical Lab Results

MIC Testing

Antimicrobial	MIC µg/mL
Cefoxitin Screen	S
Oxacillin	≤ 0.5 S
Erythromycin	≥ 8 R
Clindamycin	≤ 0.25 S
Vancomycin	1 S
InCR	Negative

From a Lab Director's Perspective

- 3 Different Scenarios Encountered:
- 1. Genotype correlates with phenotype Woohoo!
- 2. Detection of a AMR resistance marker with a susceptible AST profile
- 3. Lack of detection AMR resistance marker and a resistant AST profile

Mechanisms of B-lactam Resistance

The Interface Between Lab & Clinicians

What Are the Possibilities?

- Lack of expression of *mecA* in *S*. *aureus*
- Heteroresistance
- Mixed with a coagulase-negative staphylococci or another S. *aureus* harboring *mecA*
- False-positive *mecA* detection? Cross-reactivity? Or exogenous nucleic acid?
- Issues with the method/instrument

What Do You Do When Genotype and Phenotype Don't Agree?

Table H1. (Continued)

			Specimen	Re Genotype or Brodisted	Sults Observed Colony	Suggestions for		
Indication	Target(s)	Method	Type	Phenotype	(if tested)	Resolution	Consider reporting as ^a :	Comments ^b
Detection of methicillin resistance in <i>S. aureus</i> (Continued)	f SCC <i>mec-</i> NAAT Blood orfX culture i junctional regions and mecA specimen specimen	Blood culture broth, surveillance specimen	SCCmec AND mecA or other target detected	Cefoxitin R	N/A	If tested, report phenotypic result as found (methicillin R) and consider reporting molecular result per institutional protocol.	3–6	
	and/or other targets			SCCmec AND mecA or other target not detected	Cefoxitin S	N/A	If tested, report phenotypic result as found (methicillin S) and consider reporting molecular result per institutional protocol.	3–6
				SCCmec AND mecA or other target detected	Cefoxitin S	Confirm isolate identification, repeat AST and consider mecA colony NAAT if available. If mixed culture, test isolates individually	If discrepancy is not resolved by suggested testing, report as methicillin R.	2
				SCCmec AND mecA or other target not detected	Cefoxitin R	Confirm isolate identification, repeat AST and consider mecA colony NAAT if available. If mixed culture, test isolates individually	If discrepancy is not resolved by suggested testing, report as methicillin R.	3, 11

M100-S29, CLSI, 2019 - Table H1

Cefoxitin Disk to Uncover the Culprit

Image courtesy of Raquel Martinez

Importance & Reliance on Antibiograms Grow!

Available & Forthcoming AMR Detection Methods

Source	Test	AMR genes	TAT (hr)	FDA Status
Whole blood	T2 Resistance	mecA/C, vanA/B, bla _{CTX-M} , bla _{KPC} , bla _{NDM} , bla _{VIM} , bla _{IMP} , bla _{OXA-23/OXA-48-like} , bla _{CMY} , bla _{DHA}	3-5	
+ Blood Cultures	Xpert MRSA/SA BC Biofire BC-ID Verigene BC-GP & BC-GN Genmark BCID-GP & -GN	mecA mecA, vanA/B, bla _{KPC} mecA, vanA/B, bla _{CTX-M} , bla _{KPC} , bla _{NDM} , bla _{VIM} , bla _{IMP} , bla _{OXA} mecA/C, vanA/B, bla _{CTX-M} , bla _{KPC} , bla _{NDM} , bla _{VIM} , bla _{IMP} , bla _{OXA-23/OXA-48-like}	1 1 2.5 1.5	 ✓ ✓ ✓
Respiratory	Biofire RP & RP2 Biofire Panel Pneumonia Curetis Unyvero HPN	None <i>mecA/C, MREJ vanA/B, bla</i> _{CTX-M} , <i>bla</i> _{KPC} , <i>bla</i> _{NDM} , <i>bla</i> _{VIM} , <i>bla</i> _{IMP} , <i>bla</i> _{OXA-48} Expanded panel	1 1 4-5	✓ ✓ ✓
Urine	OpGen Acuitas ARM Gene Panel u5.47	Expanded panel	3	
Isolates	Xpert Carba-R WGS	bla_{KPC} , bla_{NDM} , bla_{VIM} , bla_{IMP} , $bla_{OXA-48-like}$ Comprehensive (known AMR)		✓ ???

Combining AMR Testing With The Antibiogram

			%S								
Organism	No. Strains	CLI	DAP	DOX	ERY	LNZ	ΟΧΑ	PEN	RIF	SXT	VAN
All S. aureus	244	80	99	98	50	100	52%	13	98	96	100
Oxacillin-resistant S. <i>aureus</i> (MRSA)	126	44	99	96	4	100	0	0	95	94	100
Oxacillin- susceptible S. <i>aureus</i> (MSSA)	118	97	100	99	72	100	100	18	99	97	100
S. aureus & mecA PCR*	231						53%				

Demonstrates high concordance between molecular and phenotypic methods for prediction of MRSA by *mecA*

M39-A5, CLSI, Coming Soon!

Case 2---What do you do with this result?Molecular ARMIC Testing

Clinical

Lab

Results

From Positive Blood Cx					
mecA	Detected				
SCCmec	Detected				

Try to sort out if it is OS-MRSA versus *mecA*-"MSSA"

The lab says even the PBP2a phenotypic test is negative

Antimicrobial	MIC µg/mL
Cefoxitin Screen	S
Oxacillin	≤ 0.5 S
Erythromycin	≥ 8 R
Clindamycin	≤ 0.25 S
Vancomycin	1 S
InCR	Negative

Dicloxacillin works better than nothing for OS-MRSA in a murine thigh model

	DECE	SCCm	Oxacillin	Highest oxacillin	Avg log CFU ± S	6D (%) per g	thigh tissue	Susceptik defined	oility status by Vitek 2⊆
Isolate	type	<i>ec</i> type	MIC (µg/ml)	which cell growth occurred	Untreated	Treated	P (treated vs untreated)	ΟΧΑ	VAN
1306	la	IV	0.5	32	6.55 (8.6)	4.71 (9.7)	< 0.001	R	S
1326	lb	IV	0.25	0.5	6.6 (6.5)	4.50 (4.3)	< 0.001	S	S
1552		IV	1	64	6.25 (10.3)	3.75 (9.1)	<0.001	R	S
4666	lc	IV	1	1	6.53 (8.3)	3.72 (10.4)	<0.001	S	S
6083	lc	IV	6	128	7.45 (11.2)	5.02 (6.2)	< 0.001	R	S
2712		ND	256	>128	6.32 (3.6)	6.25 (8.8)	NS	R	S
29213	IV	NA	0.125	0.5	6.70 (6.7)	1.18	<0.001	S	S

Ikonomidis et al. AAC 2008 52(11):3905-8

Treating OS-MRSA with dicloxacillin does not always work as well as vancomycin

Compared 15 OS-MRSA (mecA+/PBP2a+) isolates in time-kill and murine thigh

MICs of oxacillin =0.25-1µg/mL (one MRSA with MIC 256 µg/mL)

7 of the OS-MRSA had significantly less killing with the dicloxacillin

Success of 67% versus 75% diclox versus vanco

Labrou M et al AAC 2012 56(6):3388-91

My approach is mecA "MSSA"

- Patient high risk for endovascular focus and complicated bacteremia
- Very little in the literature around what to do besides treat as MRSA
- What is the cause of the "false positive" mecA

mecA-positive-"MSSA" After overnight induction with cefoxitin S→R

Tenover FC & Tickler IA. Clin Micro News (2015) 37(10):79-84

Antimicrobial exposure across multiple *mecA*-MSSA PCR positive caused reversion to resistance by frequent point mutation which restored the resistant phenotype

		Before cefo	xitin selection	on	After cefoxitin selection			
Isolate #	SCC <i>mec</i> Type	Oxacillin MIC (µg/ml)	Cefoxitin screen (µg/ml)	PBP2a	Oxacillin MIC (µg/ml)	Cefoxitin screen (µg/ml)	PBP2a	
CRG2382	IV	0.5	≤4	Negative	>2	>4	Positive	
CRG2383	IV	0.5	≤4	Negative	>2	>4	Positive	
CRG2935	IV	≤0.25	≤4	Negative	>2	>4	Positive	
CRG2937	II	≤0.25	≤4	Negative	>2	>4	Positive	
CRG2939	II	≤0.25	≤4	Negative	1	>4	Positive	
CRG2941	II	≤0.25	≤4	Negative	>2	>4	Positive	
CRG2943	IV	≤0.25	≤4	Weak positive	>2	>4	Positive	

Table adapted from publication RV Goering et al. AAC 2019. doi:10.1128/AAC.00558-19

PBP2a mutations reverted after exposure/selection with cefoxitin

OS-MRSA

MRSA revertant

Isolate	Relevant <i>mec</i> A sequence	Result	Relevant <i>mec</i> A sequence	Result	Position(s) on <i>mec</i> A sequence map
CRG2382 ^a	C->T@ nucleotide 796	stop codon replaces glutamine	T->A @ nucleotide 796	lysine replaces stop codon	6
CRG2383 ^a	C->T@ nucleotide 796	stop codon replaces glutamine	T->G @ nucleotide 796	glutamic acid replaces stop codon	6
CRG2935	G->A@ nucleotide 1673	stop codon replaces tryptophan	T->A @ nucleotide 1672	lysine replaces stop codon	8, 9
CRG2937	G->A@ nucleotide 3	stop codon replaces methionine	A->G @ nucleotide 12	new methionine created (only first 3 aa's lost)	1, 2
CRG2939	loss of A @ nucleotide 255-261	reading frame shift produces stop codon	insertion of A @ nucleotide 268-272	reading frame restored	3, 4
CRG2941	loss of A @ nucleotide 662-668	reading frame shift produces stop codon	insertion of A @ nucleotide 662-668	reading frame restored	5
CRG2943	loss of G @ nucleotide 692-695	reading frame shift produces stop codon	insertion of G @ nucleotide 692-695	reading frame restored	7

^a Isolates obtained from different patients during different time periods (7)

	~	V	~						
	atgaaaaaga	taaaattgt	tccactatt	ttaatagtg	tagttgtcgg	gtttggtata		60	
	tattttatg	cttcaaaaga	tagaaatt	aataatacta	ttgatgcaat	tgaagataaa		120	
	aatttcaaac	aagtttataa	agatagcagt	tatttcta	aaagcgataa	tggtgaagta		180	
	gaaatgactg	aacgtccent	aaaaatata	aatagtttag	gcgttaaaga	tataaacatt		240	5
	caggatcgta	aaataaaaaa	agtatctaaa	aataaaaaac	gagtagatgc	tcaatataaa	-A	300	-
	attaaaacaa	actacggtaa	cattgatcgc	aacgttcaat	ttaattttgt	taaagaagat	1.7	260	
C->T	ggtatgtgga	agttagattg	ggatcatage	gtcattattc	caggaatgca	gaaagaccaa	TA	420	
m->7	agcatacata	ttgaaaattt	aaaatcagaa	cgtggtaaaa	ttttagaccg	aaacaatgtg	/	480	
1-/A	gaattggcca	atacaggaac	agcatatgag	ataggcatcg	ttccaaagaa	tgtatctaa	C.5	540	
6 ^{T->G}	aaagattata	aagcaatcgc	taaagaacta	agtatttctg	aagactatat	caaactacaa		600	
	atggatcaaa	attgggtaca	agatgatacc	ttcgttccac	ttaaaaccgt	taaaaaatg		660	
	gatgaatatt	taagtgattt	cgcaaaaaaa	tttcatctta	caactaatga	aacagaaagt		720	
	cgtaactatc	ctetaggaaa	agcgacttca	catctattag	gttatgttgg	tcccattaac		780	
	tctgaagaat	taaaacaaaa	agaatataaa	ggctataaag	atgatgcagt	tattggtaaa		840	
	aagggactcg	aaaaacttta	cgataaaaag	ctccaacatg	aagatggcta	tcgtgtcaca		900	.7
	atcgttgacg	ataatagcaa	tacaatcgca	catacattaa	tagagaaaaa	gaaaaaagat	-G	960	
	ggcaaagata	ttcaactaac	tattgatgct	aaagttcaaa	agagtattta	taacaacatg	+G	1020	
	aaaaatgatt	atggctcagg	tactgctatc	cacceteaaa	caggtgaatt	attagcactt	/	1080	
	gtaagcacac	cttcatatga	cgtctatcca	tttatgtatg	gcatgagtaa	cgaagaatat	/	1140	٩
	aataaattaa	ccgaagataa	aaaagaacct	ctgctcaaca	agttccagat	tacaactto		1200	,"
	ccaggttcaa	ctcaaaaaat	attaacagca	atgattgggt	taaataacaa	aacatragac		126	-8
	gataaaacaa	gttataaaat	cgatggtaaa	ggttggcaaa	aagataaatc	ttggggtggt	T->A	1320	
	tacaacgtta	caagatatga	agtggtaaat	ggtaatatcg	acttaaaaca	agcaatagaa	//	1380	
	tcatcagata	acattttctt	tgctagagta	gcactcgaat	taggcagtaa	gaaatttgaa	//	1440	
	aaaggcatga	aaaaactagg	tgttggtgaa	gatataccaa	gtgattatcc	attttatatt		1500	
	gctcaaattt	caaacaaaaa	tttagataat	gaaatattat	tagetgatte	aggttacgga	G->A	1560	
	caaggtgaaa	tactgattaa	cccagtacag	atcctttcaa	tctatagcgc	atteraaat		1620	
	aatggcaata	ttaacgcacc	tcacttatta	aaagacacga	aaaacaaagt	ttggaagaaa		1680	
	aatattattt	ccaaagaaaa	tatcaatcta	ttaactgatg	gtatgcaaca	agtcgtaaat		1740	
	aaaacacata	aagaagatat	ttatagatct	tatgcaaact	taattggcaa	atccggtact		1800	
	gcagaactca	aaatgaaaca	aggagaaact	ggcagacaaa	ttgggtggtt	tatatcatat		1860	
	gataaagata	atccaaacat	gatgatggct	attaatgtta	aagatgtaca	agataaagga		1920	
	atggctagct	acaatgccaa	aatctcaggt	aaagtgtatg	atgagctata	tgagaacggt		1980	
	aataaaaaat	acgatataga	tgaataa					2007	

RV Goering et al. AAC 2019. doi:10.1128/AAC.00558-19

Clinical outcomes are hard to find beyond case reports of failure?

- Retrospective matched case series
- 17 mecA-MSSA (positive PCR, oxacillin-S* and cefoxitin disk-S)
- 17 *mecA*-MRSA
- Matched on age, primary bacteremia, source of bacteremia

All with vancomycin $\leq 1\mu g/mL$

Clinical failure composite end-point

*VITEK2 Oxacillin≤2µg/mL

January 2018 Volume 62 Issue 1 e01396-17

A Retrospective Analysis of Treatment and Clinical Outcomes among Patients with Methicillin-Susceptible *Staphylococcus aureus* Bloodstream Isolates Possessing Detectable *mecA* by a Commercial PCR Assay Compared to Patients with Methicillin-Resistant *Staphylococcus aureus* Bloodstream Isolates

Dylan Jones,^a Ramy H. Elshaboury,^b Erik Munson,^c Thomas J. Dilworth^d

All *mecA*-MSSA were reported as such

Even though anti-MRSA therapy was primarily used *mecA*-MSSA did not respond as quickly as MRSA

Clinical summary-Trust the genotype?

- With the mutation reversion data and the worse outcome data (although not robust) would favor treating invasive bacteremia as a MRSA which is high risk for failure
- Would use vancomycin or ceftaroline or both depending on the clinical picture

HAIC MRSA Isolates Overview: 2005 - 2016

• Emerging Infections Program (EIP)

- Active Bacterial Core Surveillance (ABCs)

Invasive bacterial pathogens of PH importance (MRSA)

 Healthcare-Associated Infections - Community Interface (HAIC)

o Invasive S. aureus (MRSA/MSSA) Infection Tracking

HAIC MRSA Isolates Overview: 2005 - 2016

- Almost 12,000 MRSA isolates collected and characterized
 - Molecular strain typing
 - Reference antimicrobial susceptibility testing
 - Toxin testing (PVL and TSST-1)
 - SCCmec cassette typing

HAIC MRSA Isolates Overview: 2005 - 2016

- State participation has varied from year to year (3-9)
 - 2005: 8 states collected
 - 2016: 3 states collected
- Method for strain typing has changed over the years
 - 2005-2012: PFGE/Inferred PFGE
 - 2013-2016: spa typing and inferred Clonal Complex (CC)
- WGS on majority of EIP isolates (start with 2017 isolates)
 - Will allow for ability to detect emerging AR mechanisms and study genotypic/phenotypic relationships.

Case 2: What If....

Molecular AR

From Positive Blood Cx						
mecA	NOT Detected					

Clinical Lab Results

MIC Testing

Antimicrobial	MIC µg/mL
Cefoxitin Screen	R
Oxacillin	1.0 S
Erythromycin	≥ 8 R
Clindamycin	≤ 0.25 S
Vancomycin	1 S
InCR	Negative

Molecular Detection of mecA

- Nucleic acid amplification tests, such as PCR, can be used for direct detection of *mecA*, the most common gene mediating oxacillin resistance in staphylococci
 - mecA PCR tests will not detect novel resistance mechanisms, such as mecC
 - Mechanisms of oxacillin resistance other than *mecA* are rare
- Since 2005, no *mecC* harboring MRSA have been identified among EIP isolates
 - ID of phenotypically resistant, but *mecA*-negative MRSA would indicate the potential presence of *mecC*, and WGS would be conducted.

Case 2: Background Information - mecC

- First described in 2011, following the WGS of a phenotypically resistant, but *mecA*-negative MRSA strain from bovine mastitis in England
- *mecC* shares ~70% homology with *mecA*
 - not detected by mecA-based PCR or PBP2a slide agglutination
 - Commercial and in-house PCR assays must be modified to allow simultaneous detection of *mecA* and *mecC* MRSA
- mecC is encoded within a SCCmec element that is distinct from SCCmec types encoding mecA

Sharon J. Peacock and Gavin K. Paterson. Mechanisms of Methicillin Resistance in *Staphylococcus aureus*. Annual Review of Biochemistry 2015 84:1, 577-601

Case 2: Background Information - mecC

- Described throughout Europe and in a wide range of host animal species (1)
 - Farm and wildlife animals are reservoirs for *mecC*-harboring MRSA
- mecC MRSA strains are relatively rare; prevalence rate among MRSA (1):
 - 0.06% in Germany
 - 0.46% in England
 - 2.8% in Denmark in 2011, having increased since 2009
- Found predominantly in CC130 and ST425
- While overall prevalence is low, *mecC* prevalence may be underestimated because of its misidentification as methicillin-susceptible S. *aureus* (MSSA) due to its borderline resistant phenotype (2).

(1) Sharon J. Peacock and Gavin K. Paterson. Mechanisms of Methicillin	proaches To Screen and Detect mecC-Harboring Methicillin-
Resistance in <i>Staphylococcus aureus</i> . Annual Review of Biochemistry 2015 84:1,	sistant <i>Staphylococcus aureus</i> . J Clin Microbiol. 2017 Dec
577-601	;56(1).

Case 2: Background Information - mecC

- PBP2a_{mecC} has a higher affinity for oxacillin than for cefoxitin, whereas PBP2a_{mecA} shows less difference between the two B-lactams
- mecC MRSA typically displays an unusual profile of susceptibility to oxacillin and resistance to cefoxitin:
 - When tested using the Vitek 2 system, this profile had a sensitivity of 88.7% and a specificity of 99.5% for the identification of *mecC* MRSA isolates (1)
 - A 2018 study also found the phenotypic resistance pattern most frequently observed by AST devices for isolates with the *mecC* genotype was "cefoxitin resistance/oxacillin susceptibility," ranging from 54.1% (Phoenix) and 83.8% (Vitek 2) to 92.8% (WalkAway), (2)

(1) Cartwright E.J.P. Use of Vitek 2 antimicrobial susceptibility profile to identify mecC in methicillin-resistant *Staphylococcus aureus*. J. Clin. Microbiol. 2013;51:2732-2734

(2) Kriegeskorte A. et al., Comparison of Different Phenotypic Approaches To Screen and Detect mecC-Harboring Methicillin-Resistant *Staphylococcus aureus*. J Clin Microbiol. 2017 Dec 26;56(1).

Case 2: What If...Think Possible mecC-Confirm

Molecular AR

From Positive Blood Cx	
mecA	NOT Detected

Clinical Lab Results

MIC Testing

Antimicrobial	MIC µg/mL
Cefoxitin Screen	R
Oxacillin	1.0 S
Erythromycin	≥ 8 R
Clindamycin	≤ 0.25 S
Vancomycin	1 S
InCR	Negative

